Quartz Rheology and Short-time-scale Crustal Instabilities

نویسندگان

  • KLAUS REGENAUER-LIEB
  • DAVID A. YUEN
چکیده

We present numerical results of thermal-mechanical feedback in crustal quartz rheology and contrast this behavior to the vastly different character of an olivine mantle. In the numerical experiments quartz is found to have a very strong tendency for short-time-scale instabilities, while our numerical experiments show that olivine has a decisive tendency for a stable thermally lubricated slip. At the same time, olivine can also go through a transitional period of creep bursts, which are physically caused by multiple interacting ductile faults at various length and time scales which collocate quickly into a major shear zone. Since olivine has this strong propensity to self organize in a large apparently stable fault system, it lacks the dynamics of interacting ductile faults evident in other minerals. Quartz behaves totally different and keeps its jerky slip behavior for prolonged deformation. An example is shown here in which a 30 · 50 km piece of a wet quarzitic crust is extended for about 2 Ma. The associated total displacement field clearly shows the unstable slipping events, which have a characteristic time frame of one to several years, In contrast, olivine is very stable and has a much longer time scale for thermal instability of 100 kyrs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling mountain building, numerical trade off between erosion law and crustal rheology

Coupling between erosion and tectonics are thought to play a determinant role in mountains evolution. Here, we investigate the interplay in this coupling between the assumed erosion law and the crustal rhe-ology at the margin of a collisional plateau, like the Himalaya of central Nepal. Lithospheric deformation is calculated over a time scale of 100 kyr by a two-dimensional finite elements mode...

متن کامل

Constraints from rocks in the Taiwan orogen on crustal stress levels and rheology

[1] Taiwan’s Hsüehshan range experienced penetrative coaxial deformation within and near the brittle-plastic transition between 6.5 and 3 Ma. This recent and short-lasting deformation in an active, well-studied orogen makes it an ideal natural laboratory for studying crustal rheology. Recrystallized grain size piezometry in quartz and Ti-in-quartz thermobarometry yield peak differential stresse...

متن کامل

Erosion as a driving mechanism of intracontinental mountain growth

In nature, mountains can grow and remain as localized tectonic features over long periods of time (> 10 m.y.). By contrast, according to current knowledge of lithospheric rheology and neglecting surface processes, any intracontinental range with a width that exceeds that which can be supported by the strength of the lithosphere should collapse within a few tens of millions of years. For example...

متن کامل

Tectonic evolution of a continental collision zone: A thermomechanical numerical model

[1] We model evolution of a continent-continent collision and draw some parallels with the tectonic evolution of the Himalaya. We use a large-scale viscoplasto-elastic thermomechanical model that has a free upper surface, accounts for erosion and deposition and allows for all modes of lithospheric deformation. For quartz/olivine rheology and 60 mm/yr convergence rate, the continental subduction...

متن کامل

Finite element modeling of short-wavelength folding on Venus: Implications for the plume hypothesis for crustal plateau formation

[1] The key geological observations and structural interpretations associated with the current plume hypothesis for Venusian crustal plateau formation are that (1) shortwavelength, spatially periodic tectonic structures originated as mechanical instabilities in a regionally extensive surface brittle layer whose basal boundary was thermally generated and controlled; (2) characteristic wavelength...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006